An Overview of NASA Glenn Research Center's Aeronautical Communications Technology Development Efforts

2nd Integrated CNS Technologies Conference April 29 – May 2, 2001

Robert Kerczewski
Aerospace Communications Project Manager

NASA Glenn Research Center Cleveland, OH 44135 (216) 433-3434 rkerczewski@grc.nasa.gov

Overview of Current Projects

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Airspace Systems Program

Advanced Air Transportation Technologies (AATT):

Advanced Communications for Air Traffic Management (AC/ATM)

- Satellite Communications for ATM
- CNS for Distributed Air-Ground Traffic Management

<u>Virtual Airspace Modeling and Simulation (VAMS)</u>

VAMS- CNS

- Communications, Navigation and Surveillance System Modeling Small Aircraft Transportation System (SATS):
- Airborne Internet

Aviation Safety Program

Weather Accident Prevention (WxAP):

Weather Information Communications (WINCOMM)

- Air Transport to General Aviation
- National and Worldwide Datalink Communications

The Aviation Capacity and Safety Challenge

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Air Traffic to Triple in Next 20 Years

NASA Technology Goals

- Reduce the aircraft accident rate by a factor of five within 10 years, and by a factor of ten within 25 years
- While maintaining safety, increase aviation throughput in the terminal area by 40%, and en-route by 20%.

"The current air traffic management system is near its capacity limits with extensive system delays and inefficiencies resulting in annual losses to users estimated at over \$4 B."

AvSP: Weather Information Communications

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Objective:

The WINCOMM project:

Advanced communications and information technologies to enable high quality, timely dissemination of aviation weather information to all relevant global aviation users.

Aviation Safety / Weather Information Communications

Goals:

- •Enable high quality/graphical, timely weather information to all users promoting safety and efficiency.
- Provide greater access/connectivity across all users/platforms on the information network, both airborne and ground-based, nationally as well as worldwide.
- Promote an integrated global information network enabling collaborative decisionmaking further enhancing aviation safety.

AATT: Advanced Comm for ATIM

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Project Goal:

The AC/ATM project is developing and adapting advanced communications technology to enable advanced air traffic management methods and provide global connectivity to all aircraft via satellite communications in a global aviation information network.

Specific Project Objectives:

- Determine communications systems requirements for the emerging AATT ATM concept(s).
- Identify communication system and network approaches to meeting future requirements.
- Support the demonstration of AATT ATM concepts and hardware.
- Develop select high-risk, high payoff advanced communications technologies.

AATT: Distributed Air-Ground Traffic Management

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

DAG TM Feasibility Challenges

- Distributed responsibility for separation assurance
- Distributed responsibility for traffic management
- Dynamic airspace constraints
- Flow-constrained operations
- Mixed-equipage traffic
- Inter-sector/center coordination
- Human-automation interaction
- Human performance
- CNS infrastructure design
- Decision support technology design
- Communications technology design
- User competition
- Airspace access

ARTCC - Air Route Traffic Control Center
TRACON - Terminal Radar Control Facility
SUA - Special Use Airspace

SATS: Airborne Internet

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Small Aircraft Transportation System

SATS develops and integrates emerging vehicle and infrastructure technologies, and, enables access to the vastly under-utilized infrastructure of smaller non-hub airports and airspace. More efficient access to congested hubs will create unimagined transportation speed for more people to reach more destinations.

Airborne Internet

- •Provide a comm architecture that delivers aviation information services in an Internet-like manner where aircraft and ground facilities will be interconnected nodes on a high-speed digital comm network.
- 2022 Al Fundamental Characteristics:
 - Client server analogy
 - Aviation Information System
 - Integrated CNS Worldwide compatibility
 - Seamless connectivity
 - High user and system capacity

NASA Aeronautical Communications R&D

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

- Aeronautical Communications Requirements, System Architectures, Networks and Protocol Research
- Simulation and Modeling
- Datalink Development/Demonstration Cooperative Research
- Communications Technology Development for Aeronautical Applications
- Broadband Aeronautical SatCom Terminal Development/Demonstration

Air Transport: Ground-based Datalinks

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Boeing Transport Cooperative Agreement

Honeywell Transport Cooperative Agreement

- Phase I (FY98-00) efforts (Boeing & Honeywell) utilized off-the-shelf comm for rapid implementation (air phone, VHF/ACARS, ...)
- Optimal long-term operational end-solution may differ (VDL-2, SATCOM)
- Recent In-Service-Evaluations (ISE) of HI system by UAL (Electronic Flight Bag concept)

General Aviation: Ground-based Datalinks Nasa

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Left: ARNAV VHF Datalink in Cessna 180

Center: Yoke-mounted and Tethered Honeywell Display

Right: Flight Information Services Coverage

- Cooperative research efforts with ARNAV Systems and Honeywell developing VHF-based broadcast and 2-way datalink cockpit weather systems for General Aviation
- Same companies selected by FAA for Flight Information Services Datalink (FISDL) service

Air Transport: Satellite-based Datalinks NAS

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

AsiaStar Antenna

Beam Coverage

Pilot's Laptops

With LAN

cards

Worldwide Transport

Technology development and operational evaluation of graphical weather to the cockpit via broadcast SATCOM broadcast, Satellite Digital Audio Radio Services (S-DARS), for commercial transport oceanic operations.

WorldSpace

General Aviation: Satellite-based Datalinks Nasa

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Flight test and evaluation of worldwide weather datalink capability using broadcast Satellite Digital Audio Radio Services (S-DARS)

Johannesburg, South Africa September, 1999

AfriStar Satellite

Patch Antenna Mounted to Cessna 172

Internal Equipment (GPS, Laptop Computer, etc.)

Satellite

Receiver

General Aviation: Satellite-based Datalinks

Advanced Aeronautical Communications, Navigation, Surveillance

Broadcast (FIS-B) MASPS (DO-267).

Glenn Research Center

Low-Altitude AutoMET Reporting

NASA

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

- Use regional, GA aircraft operating below 20,000 ft altitude to sense and report lower atmospheric data
 - Moisture, Temperature, Winds, Turbulence, Icing
- To be used by:
 - Forecast models, Weather Briefers, Controllers,
 Other aircraft
- In January 2002, Tropospheric Airborne
 Meteorological Data Reporting (TAMDAR) sensor
 built by ODS was mounted on the GRC Twin Otter
 aircraft.
 - This sensor was flown on 7 flights, collecting data for subsequent transmission off the aircraft.
- Two separate datalink systems were flown in these initial concept flights.
 - EchoFlight system, which utilizes medium-earth orbit (MEO) satellites for transmission of data.
 - Universal Access Transceiver (UAT), an air-to-air and air-to-ground link, primarily used for ADS-B/surveillance messages.

MDCRS & AMDAR Coverage from Transports

20,000 ft. MSL

AutoMET Coverage

Ground Level

Initial Datalink Concept Flights

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Low Altitude Weather Data Reporting

Flight Equipment Racks

Flight Tracks, 1/25/02

TAMDAR Sensor

Twin Otter

Air Transport: Satellite-based Datalinks

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

NASA Glenn development and demonstration program for key aeronautical satellite communications technologies:

- Phased array antennas
 - Ku Band development complete
 - Ka Band development on-going
- Antenna pointing/tracking algorithm research on-going
- Optimal modulation/coding for aerosatcom link - research on-going
- <u>Fiber-optic multi-signal distribution</u>, testbed prototype under development
- <u>Broadband mobile terminal</u> has been developed and tested
 - Ground mobile testbed
 - Flight demonstrations

Enabling Antenna Technology

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Ku-Band Tx Phased Array Development

- Boeing developed antenna via GRC cost-share.
- Broadband (active antenna); 256 kbps transmit.
- Low profile; low drag, fuel savings, lower cost.

Ku-Band Transmit Phased Array Antenna

Ku-Band Receive Phased Array Antenna

- Electronic steering; no moving mechanical parts, higher reliability, lower MRO costs.
- Multiple, independent-beam capability; one antenna, multiple satellites.

Broadband Aeronautical SatCom Terminal Development/Demonstration

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Cente

NASA Glenn has developed a mobile aeronautical satellite communications terminal, designed for both ground mobile and air-mobile experiments and demonstrations:

- Evaluation/demonstration of communications technologies.
- Demonstration of broadband aeronautical communications.
- Demonstration of ATM and Weather dissemination via satellite.
- Development/evaluation/demonstration of aeronautical satellite communications networks and protocols.
- Mobile terminal development, test and integration is complete, ground mobile experiments occur between flight tests.
- First flight tests, using NASA Dryden DC-8, completed in December 2000. (Described previously in Session C1)
- <u>Second flight tests</u>, using NASA Langley 757, going on now (April May, 2002).
- Additional Flight Tests in 2003 and 2004 will demonstrate advanced applications and protocols, such as ADS, FIS, TIS, CPDLC, ATN, IPv6, UMTS, etc.

Broadband Terminal

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Ku Band Mobile Aero-SatCom Terminal

The Ku Band Aero terminal is based on the Boeing transmit/receive antennas. It is currently housed in a specially equipped van for ground mobile experiments.

Ground mobile experiments will test antenna performance and pointing/tracking algorithms, communications equipment performance, and performance of aeronautical communications networks and applications in a mobile environment.

The mobile terminal is also designed for flight experiments to test these parameters under real flight conditions.

Interior Communications and Control Equipment

Broadband Terminal - Flight Tests

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Flight Tests of the Ku-Band Mobile Aero-Satcom Terminal

on the NASA DC-8 – Dec, 2000

Demonstrated first ever in-flight network and communications technologies.

Achieved 256 kbps transmit, 2.180 Mbps receive between NASA DC-8 and NASA GRC, DFRC, and ARC.

Sustained connectivity except under extreme bank/roll/heading profiles (e.g., greater than 35 degrees roll).

Conducted simultaneous applications:

IP (web browsing/serving, email, telnet, FTP, Voice-over-IP)

ATN (Controller Pilot Data Link Comm)

Remote Buffered Network Bus (prioritization and security features)

Live video and DC-8 Digital Air Data System transmission

Fiber-optic Broadband Signal Distribution

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

Research into the design and implementation of a fiber-optic network architecture and technologies capable of transport high bandwidth RF, microwave and millimeter wave signals for communications and other avionics applications on board an aircraft

- Provide signal distribution of high bandwidth data signals
- Allow multiplexing of highly diverse signals types
- Enable low electromagnetic interference, lower weight

Fiber-optic network testbed under development

Summary

Advanced Aeronautical Communications, Navigation, Surveillance

Glenn Research Center

NASA Glenn Aeronautical Communications R&D Programs:

- Advanced Communications for Air Traffic Management (AC/ATM): Satellite Communications, CNS for Distributed Air-Ground TM
- Weather Information Communications (WINCOMM): Air Transport to General Aviation, Nat'l & Worldwide Datalink Communications
- Small Aircraft Transportation System (SATS): Airborne Internet
- Virtual Airspace Modeling and Simulation (VAMS): CNS Systems

Aeronautical Communications Technology Development:

- Ground-based datalink technologies for GA
- Narrowband satellite communications technologies for GA
- Ground-based datalink technologies for Air Transport
- Narrowband and broadband satellite communications technologies for Air Transport
- Supporting technology developments antennas, modulation/coding,, signal distribution, network technologies and protocols.